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Abstract

Chimeric antigen receptor (CAR)-T cell therapy faces significant challenges in treating solid tumors, including immune eva-
sion, suppressive tumor microenvironments, and on-target/ off-tumor toxicity, which limit its clinical efficacy. Although it has
revolutionized treatment for hematological malignancies, these obstacles hinder its broader application in solid tumors. Nano-
technology offers innovative strategies to address these limitations through enhanced delivery, localization, and control. This
review summarizes recent advances in nanotechnology-assisted CAR-T cell therapies for gynecologic cancers, with a particular
focus on messenger RNA (mRNA)-based delivery systems, lipid nanoparticles, hydrogels, and external activation techniques
such as photothermal and acoustogenetic modulation. The integration of nanotechnology, especially mRNA-based delivery
systems, holds transformative potential for overcoming these barriers. mRNA enables transient, non-integrating expression
of CARs, meaning the genetic modifications are temporary. This improves safety and allows flexible control over treatment
intensity, while rational sequence optimization (e.g., codon usage, guanine-cytosine content, secondary structure) enhances
mRNA stability and protein translation efficiency. Lipid nanoparticles, the leading delivery platform, can be engineered for
cell-type specificity and tissue targeting through modulation of their components and surface functionalization. Recent inno-
vations, including siloxane-modified lipid nanoparticles, injectable hydrogels, and photothermal or acoustogenetic activation
strategies, enable precise spatiotemporal control of CAR-T cell function in vivo. In ovarian cancer, preclinical studies targeting
nfP2X7 and employing multifunctional nanoparticles have demonstrated synergistic efficacy and tumor-specific delivery. This
review highlights how nanotechnology platforms can be integrated with CAR-T cell therapies to enhance safety, precision, and
therapeutic outcomes in ovarian cancer.

Introduction as a promising strategy. Among emerging treatment paradigms,
Gynecologic malignancies, particularly ovarian cancer, pose signifi- CAR-T cell therapy has revolutionized hematologic cancer care,’
cant clinical challenges due to their insidious onset, frequent recur- ~ but it faces substantial barriers in solid tumors, including immuno-
rence, and limited responsiveness to conventional therapies.! These ~ Suppressive microenvironments,* inadequate T cell infiltration, and
characteristics contribute to delayed diagnosis and poor long-term on-target/off-tumor toxicities.> Recent advances in messenger RNA
survival, making the development of novel, targeted therapies a (mRNA)-based delivery platforms, particularly using lipid nanopar-
clinical priority.? To address these limitations, nanotechnology-en-  ticles (LNPs), have enabled transient and tunable CAR expression,
hanced chimeric antigen receptor (CAR)-T cell therapy has emerged ~ offering potential for safer and more controllable therapy (Fig. 1).
Integrating nanotechnology thus represents a transformative strate-
gy to enhance CAR-T therapy efficacy, precision, and safety in solid
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Fig. 1. Advantages and challenges of LNP-mRNA delivery systems for engineered cell therapy. Created with Figdraw. LNP-based mRNA delivery enables
safe, transient, and controllable protein expression with rapid kinetics and scalable production. However, challenges include immunogenicity, manufacturing
complexity, and limited clinical validation. Promising applications include CAR-T cell engineering and ligand-directed targeting within the tumor microenvi-
ronment (TME). CAR, chimeric antigen receptor; LNP, Lipid Nanoparticles; mRNA, messenger RNA.

able synergistic multimodal interventions. This review systemati-
cally examines recent advances in nanotechnology-assisted CAR-
T engineering, focusing on mRNA delivery, carrier optimization,
and biomaterial platforms, while highlighting promising preclini-
cal applications in ovarian cancer. By elucidating the mechanistic
basis and translational potential of these integrated strategies, we
aim to chart a path toward next-generation, precision-targeted im-
munotherapies in ovarian cancer.

In addition to CAR-T therapy, other immunotherapeutic ap-
proaches have been explored in ovarian cancer. Immune check-
point inhibitors targeting programmed death 1/ programmed death
ligand 1 and cytotoxic T-lymphocyte-associated protein 4 have
shown limited efficacy as monotherapy but may offer benefit when
combined with chemotherapy or anti-angiogenic agents. Cancer
vaccines based on whole tumor lysates or neoantigens are under
investigation,’ although few have advanced to late-phase trials.
Tumor-infiltrating lymphocyte (TIL) therapy has shown promise in
small clinical studies but remains logistically complex. For CAR-T
therapy specifically, clinical data in ovarian cancer remain limited.
A Phase I clinical trial (NCT02498912) evaluating MUC16-target-
ed CAR-T cells demonstrated safety and partial responses in pa-
tients with recurrent ovarian cancer. Integrating these approaches
with mRNA-based CAR-T cell therapies holds substantial prom-
ise for enhancing antitumor efficacy. Checkpoint inhibitors can
alleviate immunosuppressive signals that limit CAR-T cell func-
tion, while TIL therapies broaden the immune response repertoire,
complementing CAR-T activity. This combinatorial strategy may
overcome limitations such as T cell exhaustion and tumor hetero-

geneity, thereby promoting a more robust and durable immune at-
tack on ovarian cancer cells. Furthermore, mRNA nano-delivery
systems enable co-expression of immunomodulatory molecules
(e.g., bispecific antibodies or cytokines), which can synergize with
checkpoint blockade and TIL therapies to favorably modulate the
tumor microenvironment.

This review is organized into several key sections: we first in-
troduce the principles and advantages of mRNA-based CAR-T
engineering; then explore structural optimization of mRNA and
LNP carriers; followed by discussions on hydrogel-based delivery,
photothermal, and acoustogenetic control strategies; and finally,
we highlight preclinical applications in ovarian cancer and address
translational challenges.

mRNA-based CAR-T technologies

Principles of mRNA therapy

mRNA is a single-stranded ribonucleic acid transcribed from DNA
that carries the genetic information required for protein synthesis.
Upon delivery into cells, mRNA is translated into functional pro-
teins. The therapeutic potential of mRNA was first demonstrated
in 1990, when Wolff and colleagues successfully achieved expres-
sion of in vitro-transcribed mRNA in mouse skeletal muscle cells,
thereby establishing a foundation for mRNA-based therapies.!”
In vivo, mRNAs are synthesized through transcription mediated
by RNA polymerases, generating precursor mRNAs that contain
non-coding introns. These precursors undergo post-transcriptional
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Fig. 2. Post-transcriptional processing of pre-mRNA. Created with Figdraw. This schematic shows, in sequence, the four key processing steps required to
transform a eukaryotic pre-mRNA into mature mRNA. These steps ensure mRNA stability, efficient transport from the nucleus to the cytoplasm, and correct

translation. ADAR, adenosine deaminase acting on RNA; mRNA, messenger RNA.

modifications, including 5’ capping, splicing, polyadenylation, and
A-to-I editing, to form mature mRNAs suitable for translation into
proteins (Fig. 2).11

Advantages of mRNA nano-delivery systems

Recent advances in mRNA synthesis, chemical modification, and
delivery technologies have significantly accelerated the devel-
opment of mRNA therapeutics.!?> The success of mRNA-based
COVID-19 vaccines not only validated this platform clinically but
also catalyzed interest in applying mRNA technologies to cancer
immunotherapy, including CAR-T cell engineering.!® Nano-de-
livery systems have emerged as promising non-viral vectors for
delivering CAR-encoding mRNA into T cells or other immune
cells, enabling efficient generation of functional CAR-T cells.!*
Compared with traditional viral vectors, mRNA nano-delivery
platforms offer several distinct advantages that enhance their clini-
cal potential.'> These systems exhibit superior biosafety, as mRNA
functions transiently in the cytoplasm without integrating into the
host genome, thereby avoiding the risk of insertional mutagenesis.
They also allow precise control over gene expression, with tunable
dosing and administration frequency enabling fine temporal regu-
lation.'® Nanocarriers can be decorated with targeting molecules,
such as antibodies, to deliver mRNA specifically to certain cell
types, improving delivery precision and therapeutic selectivity.!?
Because mRNA does not require nuclear entry, translation in the
cytoplasm is rapid and efficient, a process further enhanced by op-
timized sequences and chemical modifications.'® In terms of pro-
duction, mRNA and its carriers can be synthesized quickly and
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scaled efficiently in cell-free systems, in contrast to the limitations
of cell-based viral vector manufacturing.'® Additionally, mRNA
nanocarriers can act as intrinsic immune adjuvants by stimulating
innate immune responses, a property that can be tuned to synergize
with adaptive immunity for antitumor effects.?? Importantly, their
modular and flexible design enables the incorporation of complex
constructs such as bispecific antibodies,?! cytokines,?? and co-
stimulatory molecules that are often difficult to deliver via viral
vectors.?? Collectively, these features position mRNA nano-deliv-
ery systems as a powerful platform for advancing next-generation
CAR-T cell therapies.

Structural design and synthesis of mRNA nano-delivery systems

mRNA nano-delivery systems typically consist of two key compo-
nents: a core mRNA payload and an external nanocarrier shell.>*
Rational design of the mRNA sequence based on the target pro-
tein allows for enhanced expression of tumor-associated antigens
in antigen-presenting cells or T cells, thereby boosting antitumor
immune responses. Encapsulation of mRNA within carriers, such
as LNPs, protects it from enzymatic degradation by RNases and
facilitates targeted delivery to specific tissues or immune cell
populations.?® Both the engineering of the mRNA payload and the
design of the nanocarrier vehicle are therefore crucial determinants
of therapeutic efficacy.?®

Structural optimization of mRNA

Therapeutic mRNAs are typically synthesized by in vitro tran-
scription from a linearized DNA template.”” A complete mRNA
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Table 1. Comparison of mMRNA nanocarriers and viral vectors for CAR expression (mRNA nanocarriers offer safer, non-integrating, and more controllable

expression but face limitations in duration and in vivo persistence)

Feature mRNA nanocarriers

Viral vectors

Feature

Genome integration risk No integration

Expression duration Short (transient)
Immunogenicity Tunable
Manufacturing speed Rapid, cell-free

Scalability High (in vitro synthesis)

Possible insertional mutagenesis
Long-lasting

Higher risk

Slower, cell-based

Limited by viral production systems

Genome integration risk
Expression duration
Immunogenicity
Manufacturing speed

Scalability

CAR, chimeric antigen receptor; mRNA, messenger RNA.

transcript consists of five components: the 5’ cap, the 5" untrans-
lated region, the open reading frame, the 3’ untranslated region,
and the 3' poly(A) tail. The coding sequence (CDS) within the
open reading frame encodes the antigen, antibody, or functional
protein of interest.?® Enhancing expression of exogenous proteins
often involves optimizing the CDS region to improve translation
efficiency and protein yield.?

Codon optimization is a widely used strategy that replaces rare
codons with synonymous, frequently used codons to align with
the host’s tRNA abundance.?® This improves mRNA stability and
translation efficiency, particularly near the start codon, where op-
timal codon usage enhances ribosomal elongation and reduces the
likelihood of translational stalling.3! Higher guanine-cytosine con-
tent is associated with improved secondary structure stability and
prolonged transcript half-life. For example, rare codons can hinder
translation and even trigger mRNA degradation by slowing ribo-
some progression.3?

The secondary structure of mRNA, defined by its folding free
energy, plays a critical role in transcript stability and expression.
mRNAs with more stable secondary structures (i.e., lower free
energy) typically exhibit longer intracellular half-lives and higher
protein output.®

Selection and engineering of nanocarriers

The efficiency of mRNA delivery is closely dependent on the prop-
erties of the nanocarrier system.’* Lipid-based and polymer-based
nanoparticles have emerged as the most promising platforms for
delivering negatively charged, easily degradable mRNAs into the
cytoplasm of immune cells.?® These nanocarriers enhance mRNA
stability, reduce cytotoxicity, and facilitate intracellular trafficking
at relatively low manufacturing costs.3®

Among these, LNPs are the most extensively studied and clin-
ically validated.3” They typically comprise four components: ion-
izable lipids, cholesterol, helper phospholipids, and polyethylene
glycol (PEG)-lipids.?® Tonizable lipids enable the particles to re-
lease their mRNA cargo once inside the cell by becoming posi-
tively charged in the acidic environment of endosomes. Choles-
terol adds stability to the nanoparticle structure and assists with
membrane fusion. Helper phospholipids support the particle’s
shape and facilitate interactions with cell surfaces. PEG-lipids
form a protective outer layer that prevents rapid clearance by the
immune system, allowing prolonged circulation. lonizable lipids,
positively charged at low pH, form electrostatic complexes with
negatively charged mRNA molecules during formulation and
facilitate endosomal escape following cellular uptake.3® Choles-
terol improves particle stability, promotes membrane fusion, and
enhances cytoplasmic delivery.*’ Helper phospholipids stabilize
the lipid bilayer and modulate phase behavior, while PEG-lipids
enhance colloidal stability, reduce opsonization, and prolong cir-

culation time.*!

LNPs offer several advantages over viral vectors, including re-
duced immunogenicity, larger cargo capacity, and a lower risk of
insertional mutagenesis.*> Furthermore, their formulation can be
tailored for organ-specific delivery.*? For instance, increasing the
proportion of cationic lipid (2,3-Dioleoyloxy-propyl)-trimethylam-
monium chloride (DOTAP) can shift LNP biodistribution toward
pulmonary tissues,** while modifications to cholesterol structure
can bias delivery toward hepatic T cells. Notably, a study iden-
tified heterocyclic lipopolyamines that not only improve mRNA
transfection but also enhance innate immune activation via STING
pathway signaling, further potentiating antitumor immunity.*s

Surface modifications of LNPs with targeting ligands or by
modulating PEG characteristics (e.g., PEG length, shedding kinet-
ics, and protein corona composition) allow fine-tuned control of
biodistribution and cellular uptake.*® However, a balance must be
struck: while longer PEG chains extend circulation time and re-
duce nonspecific serum interactions, they may hinder membrane
fusion and impair endosomal escape.*” Thus, careful optimization
of both core and carrier components is essential to achieve robust,
safe, and tissue-specific mRNA delivery (Table 1).

Progress in clinical application of mRNA-LNP for CAR-T cell
therapy

The application of LNP-mediated mRNA delivery in CAR-T cell
therapy has advanced rapidly in recent years, demonstrating both
feasibility and therapeutic potential.*® In 2020, a study demonstrat-
ed the use of LNPs to deliver CAR-encoding mRNA into primary
human T cells in vitro, achieving efficient functional protein ex-
pression.*® Ongoing clinical studies are typically conducted in ear-
ly-phase (Phase I/II) formats, assessing the safety, persistence, and
antitumor efficacy of mRNA-engineered CAR-T cells delivered
via LNPs. These trials often employ short-lived mRNA constructs
to minimize long-term risk, with repeated dosing strategies tested
for sustained response. The strengths of mRNA-LNP systems in-
clude their non-integrating nature, rapid production, flexible de-
sign, and lower immunogenicity compared to viral vectors. More-
over, mRNA allows temporal control of CAR expression, which is
beneficial for managing toxicity. However, limitations include the
transient duration of expression, potential innate immune activa-
tion from RNA sensors, and the need for repeated administrations.
The efficient delivery of mRNA to T cells in vivo remains an ongo-
ing challenge (Table 2). This seminal work established LNPs as a
viable non-viral platform for transient CAR expression, laying the
foundation for mRNA-based CAR-T cell engineering. However,
viral vectors, particularly lentiviral vectors, enable long-term, sta-
ble CAR expression, which is critical in many clinical protocols
requiring durable antitumor activity, making them a well-estab-
lished choice for hematologic malignancies.
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Table 2. Summarizes the key strengths and limitations of using mRNA nanocarriers for CAR-T cell engineering

Aspect Pros

Cons

Safety No risk of genomic integration;

reduced long-term adverse effects
Manufacturing Scalable, cell-free, rapid production

Easily programmable, allows for rapid
modification of CAR sequences

Design flexibility

Lower regulatory complex-
ity compared to viral vectors

Regulatory potential

Temporal control allows bet-
ter toxicity management

Control over expression

Requires repeated administration due to transient expression

Sensitive to RNase degradation; cold-chain dependent

Sequence needs optimization to avoid innate immune activation

Novel delivery systems face approval uncertainties

Short expression window may limit persistence and efficacy

CAR, chimeric antigen receptor; mRNA, messenger RNA.

As interest in mRNA-LNP therapeutics surged, researchers
focused on optimizing the delivery system to address key chal-
lenges such as formulation complexity, manufacturing scalability,
and transfection efficiency.5’ Formulation modifications have been
shown to dramatically influence T-cell transfection efficiency.
Among various formulations tested, the B10 LNP emerged as a
promising candidate for CAR-mRNA delivery, offering enhanced
efficiency and potential for clinical translation.’!

In 2024, a team achieved a milestone in targeted delivery by en-
abling simultaneous organ- and cell-type-specific mRNA delivery.
Utilizing advanced targeting moieties, they demonstrated precise
mRNA delivery across multiple tissues, expanding the therapeutic
versatility of LNP-based platforms.>?

Concurrently, another group developed an acid-sensitive linker,
“azido-acetal,” to design rapidly degradable LNPs. These carriers
consisted of PEGylated lipids conjugated to azido-acetal moieties,
enabling hydrolysis within the acidic environment of endosomes.
In both in vitro and in vivo models, rapidly degradable-LNPs sig-
nificantly outperformed conventional LNPs, delivering mRNA to
the liver, lung, spleen, and brain, as well as to hematopoietic stem/
progenitor cells. This work highlights the potential of modulating
degradation rates as a strategy to tune intracellular delivery kinet-
ics and enhance therapeutic efficacy.

mRNA delivery offers unique advantages in the CAR-T context
by enabling transient, non-integrating expression of chimeric re-
ceptors. This allows more controlled dosing, reduced toxicity, and
iterative design adjustments without permanent genomic modi-
fication. Such flexibility is particularly important in solid tumor
contexts where antigen specificity and safety are major concerns.
The ability to rapidly reprogram T cells via mRNA also accelerates
preclinical testing and patient-specific customization. Looking
ahead, next-generation mRNA platforms may incorporate multi-
plexed antigen targeting, RNA switches for conditional activation,
or self-amplifying RNA systems for prolonged expression. Emerg-
ing technologies, such as in vivo CAR-T generation, where LNPs
directly deliver CAR-encoding mRNA into circulating T cells,
and Al-guided optimization of codon usage and RNA secondary
structures, may dramatically enhance the precision and efficacy
of CAR-T therapy. These advances could fundamentally shift the
paradigm from ex vivo cell engineering to rapid, on-demand im-
munotherapy.

Optimization strategies for next-generation mRNA nanocarriers

One emerging strategy for LNP optimization involves the incor-
poration of silicone-based materials. In October 2024, a group in-
troduced a new class of silicone-modified lipid nanoparticles (SiL-
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NPs) by integrating siloxane amines with alkylated tail groups,
including epoxides, esters, and amides.> Systematic structure—
activity relationship studies revealed that parameters such as the
number of cyclic siloxane units, tail length, substitution pattern,
and lipid morphology significantly influence cellular uptake and
endosomal escape (Fig. 3).

These modified SiLNPs demonstrated enhanced organ-specific
delivery, achieving selective mRNA transfection in tissues such
as the lung, liver, and spleen. The study confirmed that rational
design of siloxane-modified lipids can modulate the biodistribu-
tion and target specificity of LNPs, paving the way for precision-
targeted mRNA therapeutics.

Developmental maturity of mRNA-based CAR-T technologies

While significant progress has been made in the engineering and
delivery of mRNA-based CAR-T therapies, it is important to de-
lineate the maturity levels of different approaches to inform clini-
cal translation efforts. Most nanocarrier platforms, including LNPs
optimized for CAR mRNA delivery, have demonstrated robust ef-
ficacy in preclinical animal models but remain in early develop-
ment stages, focusing on optimization of stability, targeting, and
safety profiles. For example, hydrogel-based delivery systems and
acoustogenetic or photothermal control strategies are largely ex-
perimental and currently confined to preclinical validation.

Conversely, certain mRNA CAR-T modalities leveraging clini-
cally validated LNP platforms have progressed into early-phase
clinical trials, particularly for hematologic malignancies and select
solid tumors, marking critical milestones toward clinical adoption.
Moreover, the recent successful application of mRNA technology
in COVID-19 vaccines provides a translational framework and
regulatory precedent that supports expedited clinical evaluation of
mRNA CAR-T products. However, combination immunotherapy
strategies integrating checkpoint inhibitors or TILs with mRNA
CAR-Ts are still predominantly under investigation in preclinical
settings.

Hydrogel platforms for localized CAR-T cell delivery

Hydrogels have emerged as a promising biomaterial-based plat-
form for the localized and sustained delivery of CAR-T cells, offer-
ing an innovative alternative to systemic administration.>> Among
these, polymeric nanoparticle hydrogels are particularly attractive
due to their self-assembling and injectable properties.® These hy-
drogels can be formulated under mild, cell-compatible conditions
without requiring modification of the therapeutic cargo, enabling
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Fig. 3. Schematic representation of a silicon-based lipid nanoparticle (SiLNP)-Based mRNA-targeted delivery System. Created with Figdraw. This schematic
compares the mechanism and effect of mRNA delivery between conventional lipid nanoparticles (LNP, left) and silicone-modified lipid nanoparticles (SiLNP,

middle and lower panels). mRNA, messenger RNA.

the direct encapsulation of CAR-T cells and immunomodulatory
agents such as cytokines.5” Upon administration, they form a tran-
sient inflammatory niche that promotes the expansion, activation,
and persistence of CAR-T cells at the tumor site, significantly en-
hancing antitumor efficacy.5® This niche is characterized by the
local release of cytokines such as interleukin (IL)-2, IL-15, and
granulocyte-macrophage colony-stimulating factor, which activate
JAK/STAT and PI3K/AKT pathways to enhance CAR-T cell pro-
liferation and survival. The temporary pro-inflammatory environ-
ment mimics natural immune activation without causing systemic
toxicity.

In a notable example, one group developed an injectable Gela-
tin Methacryloyl-based hydrogel system termed i-GMD for local
CAR-T cell delivery.®® This photo-crosslinkable hydrogel retains
excellent solubility prior to injection and rapidly forms a three-
dimensional scaffold upon UV irradiation. The resulting matrix
provides a supportive microenvironment that preserves CAR-T
cell viability and proliferation within the immunosuppressive tu-
mor microenvironment. Notably, this system allows for non-inva-
sive, localized delivery of CAR-T cells, enabling their prolonged
retention and gradual release at the tumor site without the need for
surgical intervention.

Moreover, the hydrogel matrix can be co-loaded with various
therapeutic agents, including cytokines, monoclonal antibodies,
immune checkpoint inhibitors, and small-molecule drugs, to fur-
ther modulate the immune response and synergistically enhance
antitumor activity. This multifunctional capability positions hy-

drogel-based platforms as a highly versatile strategy for the next
generation of localized, programmable CAR-T cell therapies.

Photothermal therapy (PTT) synergy with CAR-T cells

The integration of PTT with CAR-T cell therapy presents a power-
ful strategy to overcome the limitations of immunotherapy against
solid tumors.%’ PTT leverages exogenous energy sources, such as
near-infrared (NIR) light, to generate localized hyperthermia via
photothermal agents, enhancing both direct tumor ablation and im-
mune activation.

One team developed a biodegradable polydopamine-coated
chromium-based nanosystem with strong photothermal conver-
sion capacity.®! Upon targeted NIR laser irradiation, the system
induces localized hyperthermia, effectively ablating solid tumor
cells through the PTT mechanism. In a preclinical mouse model,
NIR irradiation raised tumor temperature by approximately 10°C
within 5 m, leading to 70% tumor cell death and a significant re-
duction in tumor volume after treatment. Beyond direct cytotox-
icity, this approach also triggers systemic immune activation, as
evidenced by elevated serum levels of key cytokines, including
IL-2, interferon-gamma, and tumor necrosis factor-alpha, which
collectively enhance CAR-T therapy antitumor immunity. Further-
more, localized hyperthermia induced by NIR irradiation upregu-
lates the expression of chemokines such as CXCL9 and CXCL10,
and adhesion molecules like ICAM-1 and VCAM-1 within the tu-
mor microenvironment. These factors facilitate T cell trafficking
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and infiltration, increasing CAR-T cell accumulation at the tumor
site and improving therapeutic outcomes.

Complementing this thermal strategy, one team pioneered an
acoustogenetic approach that utilizes magnetic resonance imag-
ing-guided focused ultrasound to spatially control engineered
CAR-T cell activation in vivo.%? By allowing gene expression to
be turned “on” only within the targeted tumor region, this tech-
nique minimizes off-target toxicity and reduces immune-related
adverse effects in healthy tissues. By transducing acoustic signals
into genetic responses, this method enables precise, non-invasive
activation of T cells within defined anatomical regions, thereby
minimizing off-target effects and enabling the targeting of antigens
that may otherwise be expressed in healthy tissues.

Further advancing this field, one group engineered tempera-
ture-responsive gene switches that enable photothermal control of
CAR-T cell activity in situ.%3 In this system, synthetic switches
activate transgene expression under mild hyperthermic conditions
(40—42°C), induced by gold nanorod-mediated photothermal heat-
ing. In vitro, transient heating (15-30 m) resulted in up to a 60-fold
increase in transgene expression without impairing T cell viability,
migration, or cytotoxic function. In murine models, this approach
enabled localized expression of IL-15 superagonists or bispecific
T cell engagers targeting NKG2D ligands, enhancing antitumor
efficacy while mitigating systemic adverse effects. Notably, this
photothermal control strategy also showed potential in overcoming
antigen escape in metastatic tumor settings.

Together, these advances underscore the potential of integrating
photothermal or acoustic modulation with genetic engineering to
spatially and temporally regulate CAR-T cell functions, offering a
new dimension of precision in cancer immunotherapy.

Application of CAR-T and nanoparticle technologies in ovar-
ian cancer

Ovarian cancer remains one of the most lethal gynecologic ma-
lignancies, largely due to its asymptomatic progression and high
recurrence rate after standard therapy.®* Emerging strategies based
on CAR-T cell therapy and nanomedicine are being actively ex-
plored to address these challenges.%

One promising CAR-T target is non-functional P2X7 (nf-
P2X7),% an aberrantly expressed variant of the P2X7 receptor
found on the surface of various malignant cells, including ovarian
cancer cells. Owing to its restricted expression in normal tissues,
nfP2X7 has attracted attention as a selective target for adoptive
immunotherapy. Researchers successfully constructed nfP2X7-
specific CAR-T cells and demonstrated potent cytotoxic activity
against ovarian cancer cells across multiple platforms, including
monolayer cell culture, 3D spheroid models, and in vivo mouse
models. These findings highlight the therapeutic potential of nf-
P2X7-directed CAR-T cells in overcoming the immunosuppres-
sive ovarian tumor microenvironment.

In addition to cellular therapies, nanoparticle-based drug de-
livery systems are making significant advances in ovarian cancer
treatment.” A study developed a tumor-penetrating nanoparticle
platform for the co-delivery of adavosertib (a Weel G2 checkpoint
kinase) and olaparib (a poly ADP-ribose polymerase inhibitor).58
The tumor-penetrating nanoparticle-adavosertib-olaparib formula-
tion effectively targets ovarian tumor tissue, enhances intratumoral
drug accumulation, and improves therapeutic efficacy while mini-
mizing systemic toxicity. This co-delivery strategy exemplifies the
power of nanomedicine to achieve synergistic combination thera-
py within a single platform.

DOI: 10.14218/0nA.2025.00013 | Volume 3 Issue 4, December 2025

Oncol Adv

Further expanding the diagnostic and therapeutic integration of
nanotechnology, one group engineered a multifunctional nanocar-
rier by coordinating cotton phenol and a cisplatin derivative with
Fe3* ions, followed by hyaluronic acid coating to target CD44-
overexpressing ovarian cancer cells.®” The resulting HA@PFG
nanoparticles exhibited high tumor specificity, deep tissue penetra-
tion, redox-sensitive drug release, and excellent imaging contrast
both in vitro and in vivo. Mechanistically, the therapeutic efficacy
is driven by the synergistic effects of cisplatin-mediated DNA
damage, Fe’*-induced ferroptosis, and oxidative stress. These na-
noparticles exemplify the therapeutic potential of nanocarriers that
simultaneously diagnose and treat ovarian cancer.

Together, these preclinical advances underscore the promise of
both CAR-T and nanoparticle-based strategies in ovarian cancer
therapy. Their ability to selectively target tumor cells, modulate
the tumor microenvironment, and reduce systemic toxicity offers a
compelling path forward for personalized and precision treatment
in this challenging malignancy.

While the clinical experience with CAR-T therapy in ovar-
ian cancer is still maturing compared to hematologic malignan-
cies, early-phase trials have provided critical insights into target
feasibility, safety, and prevailing challenges, such as the immu-
nosuppressive tumor microenvironment. As summarized in Table
3.9 Key Clinical Trials of CAR-T and mRNA-CAR-T Platforms
in Ovarian Cancer: Targets, Outcomes, and Translational Poten-
tialkey trials targeting antigens like MUC16 (NCT02498912)
and mesothelin (NCT01583686) have demonstrated preliminary
evidence of anti-tumor activity and manageable safety profiles.
However, the limited persistence and potency of CAR-T cells in
solid tumors highlight the need for innovative approaches. This is
where the mRNA-CAR-T platform holds significant translational
promise. Its transient nature allows for safer targeting of antigens
with potential on-target/off-tumor concerns (e.g., MUC16, meso-
thelin), enabling rapid dose-finding and toxicity management. Fur-
thermore, the flexibility of mRNA-LNP systems facilitates the co-
delivery of immunomodulatory cargoes, positioning this platform
as a powerful tool to overcome the immunosuppressive barriers
identified in earlier trials, such as those targeting folate receptor
alpha (NCT03615313). The promising preclinical data targeting
nfP2X7 using mRNA-LNPs further underscore the platform’s po-
tential for rapid clinical translation in ovarian cancer.

Despite the promising potential, this review has several limita-
tions. Most of the evidence presented is derived from preclinical
models, and limited clinical data are currently available to validate
these strategies in human subjects. Additionally, the scalability and
reproducibility of complex nanomaterial systems, such as SiLNPs
or hydrogel-CAR-T formulations, remain to be fully resolved.
Regulatory approval pathways for combination nanomedicine and
cellular therapies are also underdeveloped, introducing uncertainty
for clinical translation. From an ethical and regulatory perspective,
the clinical translation of mRNA nanotechnology-based CAR-T
therapies must navigate complex frameworks. The U.S. Food and
Drug Administration (FDA) classifies products combining drugs,
biologics, and devices, such as mRNA nano-delivery systems with
CAR-T cells, as combination products, requiring coordinated re-
view under specific regulations (21 CFR Part 3). Developers must
comply with FDA guidance on manufacturing controls, nanopar-
ticle characterization, and safety monitoring to address potential
risks unique to nanomaterials, including biodistribution and long-
term toxicity. Additionally, the FDA increasingly emphasizes na-
noparticle tracking technologies (e.g., radiolabeling, fluorescence
tagging) to monitor in vivo fate and ensure patient safety in clinical
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Table 3. Key clinical trials of CAR-T and mRNA-CAR-T platforms in ovarian cancer: targets, outcomes, and translational potential

Trial identifier Target antigen BT Phase Key clinical outcomes Safety profile LB AR T
/ Vector potential assessment
NCT02498912 MUC16 Viral vector | Partial responses ob- Manageable MHigh Potential: Transient
(CA-125) served in patients with cytokine release  expression is ideal for
recurrent ovarian cancer syndrome (CRS) managing potential on-
target/off-tumor toxicity
NCT01583686 Mesothelin Viral vector  1/II Disease stabilization; Acceptable safety, “MHigh Potential: Allows
CAR-T cell persistence with one case for safer “dose-titration”
observed in some patients of severe CRS exploration of targets
expressed in normal tissues.
NCT03615313 Folate recep- Viral vector | Limited antitumor activity; Well-tolerated. “MHigh Potential: Suitable
tor alpha (FRa) highlighted immuno- for combinatorial designs
suppressive icroenvi- with immunomodulators
ronmentas a barrier. to overcome suppression.
Preclinical nfP2X7 mMRNA-LNP  N/A Potent cytotoxic activ- Good specific- “MVery High Potential:ldeal
(Bandara et (Preclinical) ity in vitro and in vivo. ity in preclini- for rapid clinical transla-
al., 202366) cal models tion of this promising

target with minimized risk

/M denotes an advantage or high potential. CAR, chimeric antigen receptor; LNP, lipid nanoparticle; mRNA, messenger RNA.

trials. Ethical considerations include informed consent detailing
novel delivery platforms and post-treatment surveillance to man-
age unforeseen adverse effects. Such regulatory specificity pro-
vides practical pathways but demands rigorous documentation and
collaboration with regulatory bodies to facilitate safe and effective
clinical deployment. Finally, while this review focuses on ovarian
cancer, broader tumor-specific factors and interpatient variability
may impact generalizability. Future clinical studies are essential to
confirm the translational potential of these nanotechnology-assist-
ed CAR-T therapies.

Challenges and limitations

Despite promising preclinical outcomes, several critical challenges
remain for translating nanotechnology-integrated CAR-T therapies
into clinical practice. First, the large-scale, reproducible manufac-
turing of LNP formulations is technically complex, requiring tight
control over particle size, charge, and encapsulation efficiency. Sec-
ond, immune responses to nanoparticle components, particularly
PEGylated lipids, can lead to accelerated blood clearance or aller-
gic reactions, complicating repeated dosing strategies. Third, the
regulatory landscape for combination products involving both ad-
vanced biologics and nanomedicine is still evolving, posing uncer-
tainties in approval timelines and pathways. Finally, the high cost of
CAR-T manufacturing and nanoparticle synthesis raises questions
about scalability and access, especially in resource-limited settings.
Addressing these issues will be critical for ensuring the safe, effec-
tive, and equitable application of these cutting-edge therapies.

Conclusions

The convergence of nanotechnology and CAR-T therapy offers
unprecedented opportunities to overcome the intrinsic limitations
of solid tumor immunotherapy, particularly in gynecologic malig-
nancies such as ovarian cancer. Advances in mRNA-based non-
viral delivery systems have demonstrated substantial improve-
ments in safety, controllability, and scalability, while innovations
in nanocarrier composition and surface functionalization allow for

cell-specific, organ-targeted delivery. Biomaterial platforms such
as hydrogels enable localized and sustained CAR-T cell release,
and external activation strategies, including photothermal and
acoustogenetic modulation, provide precise spatiotemporal control
over T cell function. Despite encouraging preclinical evidence, key
challenges remain, including optimizing in vivo delivery efficien-
¢y, minimizing immunogenicity, and navigating complex regula-
tory pathways for clinical translation. Continued interdisciplinary
collaboration among immunologists, materials scientists, and cli-
nicians will be essential to transform these technologies into safe,
effective, and accessible treatments. Collectively, these emerging
strategies represent a promising blueprint for the next generation
of precision-engineered immunotherapies in ovarian cancer.
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